Inhibition of hepatic Niemann-Pick C1-like 1 improves hepatic insulin resistance.
نویسندگان
چکیده
The present study attempted to define the role of hepatic Niemann-Pick C1-like 1 (NPC1L1), a cholesterol transporter, in hepatic insulin resistance as well as hepatic steatosis. The inhibition of NPC1L1 and its molecular consequences were examined in Zucker obese fatty (ZOF) rats and cultured steatotic hepatocytes using ezetimibe, a pharmacoloigcal inhibitor of NPC1L1, and short hairpin RNA (shRNA) of NPC1L1. Ezetimibe improved hepatic insulin signaling as well as hepatic steatosis in ZOF rats. It also restored insulin sensitivity in steatotic hepatocytes in vitro through a reduction in hepatic reactive oxygen species (ROS) generation, JNK activation, and ER stress. In addition, ezetimibe recovered insulin-induced Akt activation and reduced gluconeogenic genes in the liver of ZOF rats and cultured steatotic hepatocytes. Transfection of NPC1L1 shRNA into hepatocytes also reduced ROS generation and ER stress. These results indicate that NPC1L1 contributes to hepatic insulin resistance through cholesterol accumulation, and its inhibition could be a potential therapeutic target of hepatic insulin resistance.
منابع مشابه
Niemann-Pick C1-Like 1 deletion in mice prevents high-fat diet-induced fatty liver by reducing lipogenesis.
Niemann-Pick C1-Like 1 (NPC1L1) mediates intestinal absorption of dietary and biliary cholesterol. Ezetimibe, by inhibiting NPC1L1 function, is widely used to treat hypercholesterolemia in humans. Interestingly, ezetimibe treatment appears to attenuate hepatic steatosis in rodents and humans without a defined mechanism. Over-consumption of a high-fat diet (HFD) represents a major cause of metab...
متن کاملHepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe.
Niemann-Pick C1-like 1 (NPC1L1) is required for cholesterol absorption. Intestinal NPC1L1 appears to be a target of ezetimibe, a cholesterol absorption inhibitor that effectively lowers plasma LDL-cholesterol in humans. However, human liver also expresses NPC1L1. Hepatic function of NPC1L1 was previously unknown, but we recently discovered that NPC1L1 localizes to the canalicular membrane of pr...
متن کاملEzetimibe prevents the development of non-alcoholic fatty liver disease induced by high-fat diet in C57BL/6J mice
There is currently no established treatment for non‑alcoholic fatty liver disease (NAFLD), including its most extreme form, non‑alcoholic steatohepatitis (NASH). Ezetimibe, an inhibitor of Niemann‑Pick C1 Like 1‑dependent cholesterol absorption, improves diet‑induced hyperlipidemia and attenuates liver steatosis and insulin resistance. The aim of the present study was to determine whether ezeti...
متن کاملNiemann-Pick C1 modulates hepatic triglyceride metabolism and its genetic variation contributes to serum triglyceride levels.
OBJECTIVE To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. METHODS AND RESULTS In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 sing...
متن کاملEzetimibe inhibits hepatic Niemann-Pick C1-Like 1 to facilitate macrophage reverse cholesterol transport in mice.
OBJECTIVE Controversies have arisen from recent mouse studies about the essential role of biliary sterol secretion in reverse cholesterol transport (RCT). The objective of this study was to examine the role of biliary cholesterol secretion in modulating macrophage RCT in Niemann-Pick C1-Like 1 (NPC1L1) liver only (L1(LivOnly)) mice, an animal model that is defective in both biliary sterol secre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 297 5 شماره
صفحات -
تاریخ انتشار 2009